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1 Summary 

1.1 Stock Status 

Currently, the stock is close to a default precautionary target level and can be considered “fully 

exploited” (Figure 1). The assessment suggests that the stock has recovered somewhat from a state 

where it might have been considered over-exploited, that is the stock was at greater risk of 

recruitment overfishing. 

Based on the current assessment, fishing mortality has only rarely exceeded fishing mortality at 

maximum sustainable yield (MSY), so overfishing has rarely taken place (Figure 2). However, FMSY is 

poorly estimated as it depends on a parameter in the stock-recruitment relationship, which had to 

be assumed. Therefore, it should represent an upper limit until more information on an appropriate 

fishing mortality can be obtained. An appropriate MSY based reference point for fishing mortality 

still needs to be determined. 

 

Figure 1 Spawning stock biomass by month estimated from the stock assessment model. The horizontal line is a default 
provisional target reference point (40% SSB0). Spawning stock biomass at or above this line would suggest that the stock is 
not overfished. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1985 1990 1995 2000 2005 2010

SS
B

/S
SB

0

Month

mailto:paulahmedley@yahoo.co.uk


DRAFT 
 

 

Figure 2 Fishing mortality as a proportion of the estimated fishing mortality at MSY. 

2 Data Preparation 

2.1 Commercial Size Category 

The processing facilities routinely collect average count data from the commercial categories. This 

should monitor the average size within each category. This information should be useful within the 

stock assessment model to fit to changes in mean size within the category if such changes are 

significant. One processing facility provided average counts recorded by the quality control staff. 

The change of shrimp size in the population and changes in selectivity will cause not only changes in 

the landings recorded as change in the amounts of each commercial categories, but may also change 

size within categories over time. A simple analysis of variance estimating the average count data 

dependent on the Year term as a factor suggested that Year has a significant effect on within-

category size (Table 1). This would indicate that average count data should be included in some form 

in the stock assessment model. 

Table 1 Analysis of variance for average counts in commercial category for a standard log-linear model. 

 

Residual 

degrees 

of 

freedom 

Residual 

Deviance 

Degrees 

of 

freedom Deviance Pr(>Chi) 

AvgCount ~ Category 105404 99057335 

   AvgCount ~ Category + Year 105394 97897240 10 1160095 < 2.2e-16 

AvgCount ~ Category * Year 105312 90699966 82 7197274 < 2.2e-16 
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Figure 3 Box and whisker plot for average count data in commercial size categories, showing the median, 25
th

 and 75
th

 
percentiles and 1.5 times the interquartile range for the average counts in each category. The solid lines represent the 
minimum and maximum count for each category (based on the name) and the dotted line is the mid-point. 

 

Figure 4 The same data as Figure 3 plotted as peeled tail weight. These data would be used in the stock assessment model. 
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Average count data can also be used to interpret commercial size category in terms of the size 

composition. In using commercial size categories, it will be necessary to allocate the estimated catch 

to each category based on individual tail weight. Ostensibly, each category has an upper and lower 

count which can be used to define the lower and upper bound on the tail weight to be allocated to 

that size category. This seems reasonable for all size categories to the 150-200 category (Figure 3, 

Figure 4). However, it appears that some categories may be combined as they contain very similar 

sized shrimp. Note that combining categories only loses relative size information, which, if not 

significantly different, should not be a problem for the model. There is a strong indication that 100-

200 and 200-300 categories can be combined, as could all categories 250-350 to 300-500 BK. The 

broken category “BK” appears smaller, but this might be because they are in pieces, and these could 

also be combined into a single “small” category.  

It is important that the boundaries in allocating the shrimp to their size category are as close to 

reality as possible. Incorrect boundaries will produce bias in the resulting growth parameters and 

assessment. Based on the available count and tail weight information (Figure 3, Figure 4, Table 2), 

each category was allocated a tail weight range (Table 3). All catches within the same size range 

were combined and these size ranges were then used to reference the estimated catch in each size 

category in the model. These size allocations may require further adjustment based on model 

diagnostics (see Section 4). 

Table 2 Mean and standard deviations for the average counts per pound for the named categories from Heiploeg Suriname 
and Noble House Seafoods (Guyana) processors. 

 
Guyana 

 
Suriname 

Name Count/lb Std. Dev. 
 

Count/lb Std. Dev. 

70-90 78.14 4.02 
 

79.87 5.75 

90-110 97.05 4.57 
 

100.80 3.40 

110-130 120.84 4.65 
 

121.66 6.05 

130-150 140.92 2.90 
 

141.34 5.40 

150-200 182.43 4.75 
 

179.96 6.77 

100-200 285.99 7.84 
 

252.51 21.26 

200-300 292.59 57.27 
 

309.74 62.83 

250-350 342.13 18.73 
   300-400 344.11 8.86 
 

356.40 10.77 

300-500 382.28 30.21 
 

359.81 30.12 

300-500BK  
  

345.36 19.64 

BK 585.35 17.92 
 

208.78 158.54 

 

  

  



DRAFT 
 

Table 3 Commercial category allocation and size definitions used in the stock assessment model. ID refers to the 
identification number for the category, so all categories with the same ID are combined. See section 3.6.2 for the 
interpretation of these categories. 

Categories  Limits from Commercial 
Count Names 

Limits assumed from 
average counts 

Peeled Tail Weights (g) 

Name ID Min  Max Min  Max Min Max 

41/60 1 40 60 0 90 5.04 10.00 

70/90 1 70 90 0 90 5.04 10.00 

BK41/60 1 40 60 0 90 5.04 10.00 

BK51/60 1 50 60 0 90 5.04 10.00 

116BK 2 110 1000 0 1000 0.00 10.00 

2/3 J 2 
  

0 1000 0.00 10.00 

8-3BK 2 
  

0 1000 0.00 10.00 

BK 2 
  

0 1000 0.00 10.00 

BK1 LB 2 
  

0 1000 0.00 10.00 

BK1LB 2 
  

0 1000 0.00 10.00 

BK2/3J 2 
  

0 1000 0.00 10.00 

L/R 2 
  

0 1000 0.00 10.00 

LARGEPCS 2 
  

0 1000 0.00 10.00 

LP 2 
  

0 1000 0.00 10.00 

MM 2 
  

0 1000 0.00 10.00 

Other 2 
  

0 1000 0.00 10.00 

PCS 2 
  

0 1000 0.00 10.00 

S/W 2 
  

0 1000 0.00 10.00 

S/WATG 2 
  

0 1000 0.00 10.00 

SM 2 
  

0 1000 0.00 10.00 

SOUR 2 
  

0 1000 0.00 10.00 

SP 2 
  

0 1000 0.00 10.00 

WB 2 
  

0 1000 0.00 10.00 

90/100 3 90 100 90 100 4.54 5.04 

90/110 3 90 110 90 100 4.54 5.04 

100/120 4 100 120 100 130 3.49 4.54 

100/130 4 100 130 100 130 3.49 4.54 

100/150 5 100 150 100 150 3.02 4.54 

110/150 5 110 150 110 150 3.02 4.12 

110/130 6 110 130 110 130 3.49 4.12 

130/150 7 130 150 130 150 3.02 3.49 

130/150− 7 130 150 130 150 3.02 3.49 

150/200 8 150 200 150 200 2.27 3.02 

120/200 9 120 200 150 300 1.51 3.02 

150/OP 9 150 1000 150 300 1.51 3.02 

180/200 9 180 200 150 300 1.51 3.02 

180/210 9 180 210 150 300 1.51 3.02 

OVER 150 9 150 1000 150 300 1.51 3.02 

100/200 10 100 200 200 400 1.13 2.27 

100/200BK 10 100 200 200 400 1.13 2.27 

130/200 10 130 200 200 400 1.13 2.27 

200/300 10 200 300 200 400 1.13 2.27 

200/300BK 10 200 300 200 400 1.13 2.27 

900 11 900 1000 300 1000 0.00 1.51 

250/350 11 250 350 300 1000 0.00 1.51 

300/350 11 300 350 300 1000 0.00 1.51 

300/400 11 300 400 300 1000 0.00 1.51 

300/500 11 300 500 300 1000 0.00 1.51 

300/900 11 300 900 300 1000 0.00 1.51 

400/600 11 400 600 300 1000 0.00 1.51 

BK300/900 11 300 900 300 1000 0.00 1.51 

OVER 400 11 400 1000 300 1000 0.00 1.51 

OVER 500 11 500 1000 300 1000 0.00 1.51 

OVER 900 11 900 1000 300 1000 0.00 1.51 
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2.2 Catch and Effort 

Catch and effort data were obtained from spreadsheet forms used by Noble House Seafoods and 

Heiploeg Suriname to record landings and processing operations. The spreadsheets are used for 

internal monitoring of their business. Data were extracted from these forms and held in a database 

for further manipulation. Using the database, it was possible to match trip information (trip dates of 

departure and return) with processed landings weight, fuel used and commercial size grades 

produced. 

The landed catch is recorded as pounds of processed shrimp, representing about 43% of the live 

weight. Effort might be measured in two ways: as days-at-sea and as fuel used. Basing effort on fuel 

use has significant advantages in costs and real effort (trawl time), but may vary from vessel to 

vessel with engine size and other characteristics, and will not be available for all trips. 

Plots of effort against catch reveal an asymptotic relationship with catch for both measures of effort 

(Figure 5). The variation in catch at higher levels of effort may be related to abundance, but could 

also be explained by other factors. Although ideally any standardisation to account for these factors 

would be included in the stock assessment model, this would become too complex at this stage, 

although it might be considered for later development. Instead, standardisation was considered 

externally using generalized linear models. 

The aim of standardisation is to adjust abundance indices to account for variation in the index that 

might be attributed fishing power (catchability) rather than changes in abundance, which apart from 

reducing noise of the index potentially removes bias. In this case, the only covariate data available 

with the catch and effort is the vessel name. The aim of the standardisation is not to affect any 

trends in the index which could be related to abundance, since this might introduce bias as well as 

eliminate it. For example, standardisation based on vessel name should remove noise related to 

fishing power without affecting abundance trends as long as vessels have landings over significant 

periods of the time series.  
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Figure 5 Catch (lb) plotted against the two raw measures of effort: fuel used in litres and days-at-sea for Guyana (black) and 
Suriname (blue). 

A log-linear model was used to estimate the catch on each trip with the available data: 

    
                             1) 

where Ci is the catch of vessel Vi in year/month Mi using (log) days-at-sea ldi and (log) fuel lfi landed 

at processing facility (country) Pi. Parameters fitted to explain month and month:country interaction 

should capture any trends in biomass abundance and is therefore required in the base model. 

To test which effort variables should be included in the measure of effort and whether the vessel 

explained significant differences in catch rate, a simple analysis of variance was carried out 

comparing the three main models (Table 4). All parameters were highly significant and therefore the 

full model with all main terms should be used for any standardisation. This includes an argument for 

the inclusion of both measures of effort (days-at-sea and fuel). 

To understand seasonal patterns better, a model with separate year and month terms was fitted and 

alternative models tested (Table 5). There was a clear seasonality which showed a significant 

difference between countries, but the general pattern of the seasonality was very similar ( 

Figure 6). It should be noted that whereas the time series covers 2001-2011 for Guyana, data only 

covered 2001-2007 for Suriname, so any differences may reduce with more data. Annual changes in 

catch rates show weak annual trends for both countries, with Guyana increasing slightly and 

Suriname showing a small decrease (Figure 7).  

The seasonal peak in catch rate coincides with the period when most large, mature females are 

caught and it is likely that there is a peak in biomass at this time. The implication is that the 

standardised catch rates are likely to be tracking biomass. 

The results also indicate that the monthly change is also significant (Table 5), which suggests that 

changes in abundance are unlikely to follow a simple seasonal pattern each year. Because some 

recruitment is likely to be occurring throughout the year, the seasonal pattern has only a limited 
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capability in explaining abundance changes.  This would justify including full interaction terms for 

year and month in any standardisation model. 

There is clear evidence of diminishing returns of trip length when days-at-sea are fitted as a factor 

rather than covariate (Figure 8). While this might include issues such as increased travel time, 

weather and so on, it might also include increased time taken to catch seabob due to lower 

abundance. The data also suggested that longer trips over 12 days resulted in greater variation in 

catches, partly because there are fewer such trips, but also because the cause for the length of such 

trips are dominated by factors other than stock size. 

 

Table 4 Analysis of variance for the possible catch-effort standardisation models. P*M indicates full interaction terms for 
country and month factors, making it the base model. 

 

Residual 
degrees of 
freedom 

Residual 
Deviance 

Degrees 
of 
freedom Deviance Pr(>Chi) 

C ~ P * M 8937 9235804 
   C ~ P * M + ld 8936 7860938 1 1374867 < 2.2e-16 

C ~ P * M + ld + lf 8935 7419680 1 441258 < 2.2e-16 

C ~ P * M + ld + lf + V 8883 6989686 52 429994 < 2.2e-16 

 

 

 

Figure 6 The relative change in seasonal catch rates after accounting for vessel, effort and annual trends. Guyana and 
Suriname have significantly different catch rate changes but follow very similar patterns. 
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Figure 7 Relative annual change in catch rates. 

 

Table 5 The analysis of variance for time series terms consisting of average season across countries (M), different seasonal 
trends across countries (P*M) and inconsistent seasonal changes across the whole time series (Y*M). 

Model 

Residual 
degrees of 
freedom 

Residual 
Deviance 

Degrees 
of 
freedo
m Deviance Pr(>Chi) 

C ~ P*Y + M + lf + ld + V 9055 8532917 
   C ~ P*Y + P*M + lf + ld + V 9044 8473048 11 59869 1.11E-10 

C ~ P*Y + P*M +Y*M + lf + ld + V 8944 7330849 100 1142199 < 2.2e-16 
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Figure 8 Relative change in catch for days-at-sea fitted as a factor in the standardisation model. 

 

The asymptotic effect of trip length (Figure 8) can described as: 

   (     (   )) 

 with parameters: 

 

 

Catch effort data were retained from only two processors (BEV and NHS). PSI and GQS catch and 

effort data were rejected as CPUE seemed to be on a different scale and inconsistent (Table 6). 

Processors GQS and PSI report much higher landings per day than NHS and BEV. NHS CPUE is based 

on processed weight from internal production reports, suggesting BEV is reported in much the same 

way. GQS and PSI is likely reported as whole weight, so processed landings are multiplied by some 

constant. Data from these processors needs to be investigated to ensure that they are consistent 

with other reported landings. 

Fishing effort was calculated on a per-trip basis. NHS data was derived from internal production 

reports. Other processor data was derived from reports submitted to the Fisheries Department. 

Categories were not entirely consistent within each month. In particular, the largest category was 

rarely 70-90, so the next category (90-100, 90-110, 100-150 etc.) would most likely include all larger 

shrimp. This could be taken into account where no 70-90 category was recorded within a month, but 

otherwise was not directly addressed, although effort was correctly adjusted for the 70-90 category. 
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It could be addressed by grouping trips into the set of size categories they report within each month. 

However, ignoring this difference should only lead to a small decrease in precision. 

Table 6 Reported average CPUE in kg per standardised day-at-sea by year and processor.  

Year BEV GQS NHS PSI Total 

2001 
  

43.25 
 

43.25 

2002 
 

163.43 32.60 
 

60.79 

2003 
  

41.61 
 

41.61 

2004 
  

38.56 
 

38.56 

2005 
  

52.02 
 

52.02 

2006 
  

35.88 159.43 36.24 

2007 
 

90.76 41.61 217.55 74.42 

2008 
  

41.59 244.09 42.27 

2009 48.29 315.05 43.97 248.72 63.55 

2010 49.55 
 

38.97 213.47 59.82 

2011 58.60 
 

43.09 
 

46.71 

2012 61.18 
   

61.18 

Total 53.24 162.41 41.80 224.12 52.40 

 

For standardisation, various options from the analyses above were possible. An adjustment can be 

made on the basis of the average catch rate of each vessel to the effort measure. Furthermore, a 

nonlinear adjustment to fuel and days-at-sea effort measures was considered in developing a better 

measure of effort. In applying an adjustment specific to vessel effects, the index would remain 

unchanged with respect to average monthly change. However, various options would reduce the 

data available, while contributing little to the precision of the index. 

Four possible indices were considered: a full GLM standardised CPUE model (Table 5), nominal catch 

per day-at-sea, nominal catch per litre of fuel, and catch per day at sea adjusted for trip length using 

the asymptotic catch model (Figure 8). All indices follow the same trend (Figure 9), but the 

standardised indices and indices based on fuel generally were more closely related than the ones 

based on days at sea.  
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Figure 9 Possible abundance indices calculated using different measures of effort.  

 

Based on these results, the Shrimp and Groundfish Working Group decided at the 2013 

intersessional meeting (CRFM 2013) and the 2013 scientific meeting (this report) to simplify and 

standardise the catch and effort in the following ways: 

 Nominal catch and effort was used as this was simple and it was believed that these should 

not bias the result and provide the most data. Some corrections were applied to the data as 

below. 

 Only BEV and NHS catch effort data were retained as these provided a consistent measure. 

 Effort was based on days at sea. Fuel was not used because the number of trips for which 

this information was available was small. 

 Trips exceeding 12 days or less than 2 days were excluded. Remaining trips were validated, 

and provided catch rates within a reasonable range. 

 Trip effort (days at sea) was corrected for the asymptotic trip length (Figure 8). 

 Suriname and Guyana catch and effort data were separated. 

 Vessels were not used as a standardising factor. The relationship between vessel 

characteristics and resulting catch needs to be better understood before this standardisation 

can be done. 
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It is worth noting that a constraint could be placed on any time-based factors using mixed effects 

models, so that trends are not removed. However in this case care would be need to ensure that 

seasonality would not be removed and therefore such a model would require careful development. 

It is not clear that the additional work required would benefit the final index. 

Variations in selectivity among vessels was only cursorily considered. All vessels ostensibly apply the 

same gear, so consistent variation in shrimp size could only be the result of fishing practice (fishing 

location, time of fishing, discarding etc.). While there is significant variation in the landed size among 

vessels (Figure 10), the reason for this is unclear. Many vessels have reported very few trips, so 

whether this is due to attributes of the vessel rather than variations in fishing time or location is 

unclear. This would be worth further investigation, but more and better data would be required 

from individual vessel operations before a full understanding might be obtained. 

 

 

Figure 10 Variation in mean tail weight across all vessels.  

2.3 Maturity 

There is now a considerable data set linking female size (tail weight in grams) to maturity (presence 

of a “green vein”) in females. This allows the maturity ogive to be estimated, which can be used to 

estimate spawning stock biomass within the stock assessment model. Because these data are the 

only data relevant to estimating the maturity ogive, this can be done separately outside the main 

assessment. In this analysis, a fixed ogive is estimated. Since the status reference points will be 

based on the ratio of current SSB to unexploited SSB, the final results should be robust to errors 

associated with these estimates, and therefore errors are not carried forward into the main 

assessment, but a fixed ogive is used. 

Tail length was a much better predictor of maturity than tail weight due to the shape of the curve 

(Table 7). Therefore tail weight, which is part of the stock assessment model was converted to length 

within the logistic model. 
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Maturity may also change over time, by season for example. The available time series was short, and 

a clear seasonality was not obvious in the data. However, there was a significant change in the 

proportion of mature females over time (Table 8), which appeared to follow no time-dependent 

pattern, but varied in the catches from month to month (Figure 11). The time variation in maturity 

suggested a random effects model was appropriate (Figure 12) to account for these changes. 

However, random effects had very little influence on the final maturity model (Figure 13). The final 

model was used to estimate the expected mature proportion by tail weight (Table 9; Figure 14). 

 

Table 7 Analysis of variance comparison between a model explaining maturity based on tail weight and one based on tail 
length. 

 

Residual Degrees 
of freedom 

Residual 
Deviance 

Degrees of 
freedom Deviance 

Intercept 1964 38207 
  Tail Weight 1963 8487 1 29720.7 

Tail Length 1963 7155 0 1331.7 

 

Table 8 Analysis of variance comparison between time series factors on maturity.  

 

Residual Degrees 
of freedom 

Residual 
Deviance 

Degrees of 
freedom Deviance 

Mean 
Deviance 

Tail Length 1963 7155.1 
   +Year.Month 1938 3987.9 25 3167.2 126.688 

*Year.Month 1913 3629.5 25 358.4 14.336 
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Figure 11 Different maturity ogives (solid lines) for year.month showing some variation in the ogive between months with 
the observed proportion mature (dots). 

 

 

Figure 12 Random effects on the intercept and tail length slope. The blue dots are the conditional modes with error bars 
for each month. 
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Figure 13 Comparison in the ogive between the mixed effects estimate (solid line) and fixed effect estimate (dotted line). 

 

 

Figure 14 Final ogive estimated from the mixed effects model used in the stock assessment. 
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Table 9 Logistic model fitted to the proportion mature dependent on tail weight after accounting for random effects.  

  Estimate 
Std. 
Error z value Pr(>|z|) 

Intercept 
-

11.5937 0.3224 -35.96 <2e-16 

Slope 5.1863 0.1516 34.21 <2e-16 

   
 

     (                (               ))
 

Tail 
Weight 
(g) 

Proportion 
Mature 

 Tail 
Weight 
(g) 

Proportion 
Mature 

0.1 5.66267E-05  4.7 0.251723231 

0.3 0.000184316  4.9 0.291542624 

0.5 0.000404286  5.1 0.333857028 

0.7 0.000756563  5.3 0.378048224 

0.9 0.001291439  5.5 0.423404858 

1.1 0.002072341  5.7 0.469167776 

1.3 0.003178355  5.9 0.514579832 

1.5 0.004706915  6.1 0.558933439 

1.7 0.006776598  6.3 0.601609862 

1.9 0.009529931  6.5 0.642106256 

2.1 0.013135987  6.7 0.680048978 

2.3 0.017792455  6.9 0.715194071 

2.5 0.023726779  7.1 0.747417507 

2.7 0.031195785  7.3 0.776698581 

2.9 0.040483112  7.5 0.803099827 

3.1 0.051893654  7.7 0.826746288 

3.3 0.065744206  7.9 0.847806165 

3.5 0.082349609  8.1 0.866474078 

3.7 0.102004049  8.3 0.882957442 

3.9 0.124957739  8.5 0.897466006 

4.1 0.15139014  8.7 0.910204282 

4.3 0.181381927  8.9 0.92136641 

4.5 0.214889078  9.1 0.931132996 

 

2.4 Tail Weight: Random Samples 

The random samples needed to be converted from unpeeled tail weight to processed tail weight to 

be used in the assessment. The tail weights were multiplied by 0.78 to adjust for peeling based on 

morphometric data collected in 2007 (CRFM 2009, Table 5 p.115). Unpeeled tails are measured on 

electronic scales to within 0.01 of a gram. Within the database, these are held as whole numbers 

(integers) and compiled into 0.2g class frequencies. 
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2.5 Total Catch 

Total landings are reported to governments by each processor. Information reported has not always 

been consistent, but has improved over the years. There are initiatives to improve data reporting in 

Guyana so that it is more timely and accurate. 

Monthly landings were available from all processors back to January 2002. Before this, monthly data 

were not consistently available, but annual landings were reported. Landings are reported as total 

tail weight in pounds by commercial size categories. Annual landings are available as gross weight to 

the start of the fishery. Discards are assumed to be zero. 

3 Population Model 

3.1 Overview 

The model used in this assessment was a statistical catch-at-age model (Quinn and Deriso 1999), 

implemented with the AD Model Builder software (Fournier et al. 2012). In essence, a statistical 

catch-at-age model simulates population dynamics in time including biological and fishing processes. 

Quantities to be estimated are systematically varied until characteristics of the simulated 

populations match available data on the real population. Statistical catch-at-age models share many 

attributes with ADAPT-style tuned and untuned VPAs.  

The model is based on a standard forward-projection design, the same as that used in standard stock 

assessment software such as stock synthesis. The model used here is at an early stage of 

development, and in a much simpler form than Stock Synthesis III (NOAA Fisheries Stock Assessment 

Toolbox website: http://nft.nefsc.noaa.gov/), for example. It was necessary to develop an bespoke 

model to be able to use the available shrimp weight data. Age data are not available. This 

implementation also offers the opportunity to develop a model suitable for crustacean fisheries in 

the Caribbean and the data that has been collected in the region. The model can be adapted and 

maintained locally, incorporating improvements as they can be identified. 

Where possible the observations and model are kept distinct. The model is adjusted to fit a sufficient 

data set. In some cases, exact fits can be obtained because there are enough parameters to allow 

the model to closely follow the data. This applies to the total catch. For other data, where 

observation errors are presumed to be significant, the model may not fit the observations closely, 

and some error is acceptable.  

3.2 Monthly Catches 

The basic population model time step is one month, which was considered appropriate for this 

species. Separate models are run for males and females. When monthly catch and size composition 

data are available, a simple approach can be used to model the population, clearly separating the 

model and data. For each sex, the numbers at the beginning of each age are calculated based on 

mortality parameters and standard negative exponential model: 

             
         

where Ft = fishing mortality in month t and Sa = selectivity at age. Growth is estimated on the von 

Bertalanffy growth function (Equation 4) for the mean, and another parameter for the variation 

around the mean. Ages are measured in months, with maximum age of 12 months (0-11), after 
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which there is a plus-group in the default model. An alternative model was also considered where a 

higher proportion of shrimp die after 12 months, simulating higher mortality after spawning. 

Selectivity was modelled as a logistic function based on length. Mid-point values for each weight bin 

were converted to carapace length for each sex using values obtained from the fitted morphometric 

model. The resulting selectivity model took the form: 

   
 

     (    ((  )
        ))

     2) 

Where  Sw = selectivity for weight bin w, Stp = steepness for the logistic, S50% = carapace length at 

0.50 selectivity, and a and b parameters convert weight to carapace length (Table 10). Stp and S50% 

were estimated in the stock assessment. 

 

Table 10 Parameters derived from a morphometric linear model to convert weight to length (see Table 13). This conversion 
could be done so that each weight bin had a length associated with its mid-point weight. 

 
Female Male 

a 224.4852 73.14399 

b 2.19276 1.798805 

 

3.3 Population Model with Annual Catches 

Only annual catches, rather than monthly catches, are available for years 1985-2001. These were 

divided into months based on the average observed distribution of catches among months for the 

period 2002-2006. Because only annual data were available, these catches could only be used to 

help set the initial condition for the full population model and specifically the initial level of 

depletion. Because the model could not fit an annual fishing mortality to the annual catch data (the 

Hessian matrix could not be inverted), these catch data were used in an approximation based on 

Pope (1972). 

Observed annual catches were distributed among size categories and months based on a simple 

linear scheme. The annual catch was distributed among months based on the proportion of catches 

observed among months were monthly catches are available. The observed catch weight in each 

month (Cw) is approximately equal to the fishing mortality (F) multiplied by the biomass: 

    ∑∑∑            

 

 

 

  

 

where the biomass is the population size (   ) by sex ( ) and age ( ) multiplied by the proportion of 

each age in each weight class (    ), the class weight (  ) and selectivity (   ). Therefore, the fishing 

mortality can be estimated approximately as: 

  
  

∑ ∑ ∑             
 
 

 
  

      3) 

Similarly, the catch in numbers (    ) at age can be approximately given as: 

      ∑          

 

 

 

and by substituting fishing mortality (F ) with equation (3) gives: 
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     ∑        

 
 

∑ ∑    ∑          
 
 

 
  

 

This estimate can be included as the cohort catch in the population model:  

           
         

      

In this case, the model is not fitted to the data, but the catch data does provide an estimate of initial 

conditions (i.e. the level of depletion). 

3.4 Growth 

Most age related data are available as tail weight. This includes both commercial size category data 

and scientific sampling (see section 2). The mean growth of seabob is assumed to follow the von 

Bertalanffy growth curve. However, the stock assessment will require conversion from length to 

weight in the growth model. The general from of the growth model will be: 

     (   
   )                4) 

Parameters W∞, and k will be estimated within the stock assessment for each sex. b can be estimated 

only from a smaller morphometric data set. 

The parameter b depends on the length-weight relationship, and may change dependent on the sex 

and location (Suriname vs Guyana) of the seabob. To simplify the assessment, this parameter can be 

estimated outside the main assessment and provided as a fixed number to the assessment model. 

This will slightly underestimate the uncertainty, but prevent unrealistic parameter estimates and 

should improve the stability of the fit. 

The parameter can be estimated using a log-linear model from the morphometric data collected in 

2007/8 (CRFM 2009). The model has the general form: 

    
                                    5) 

where the independent variable ci is the log carapace length,  the dependent variable wi is the 

unpeeled tail weight and the linear predictor contains parameters a and b which can be estimated as 

part of a generalized linear model. 

The first issue is whether it is necessary to estimate separate b parameters for the sexes and 

countries. A simple analysis of variance chi-squared test was used to check whether these additional 

factors were necessary (Table 11) and the findings suggested that an interaction term is required for 

only for sex. This indicates that the shape of a seabob is affected by its sex. 
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Table 11 The basic model is: tailwt ~ lcl + sex + country + sex:country. These are the full terms for parameter a in equation 
5. The models add all interaction terms for lcl (log carapace length). Comparison is made between models (Pr(>Chi)) 

assuming that the change in deviance approximately follows the 
2
 distribution, which can be used to guide the minimum 

model. The only interaction term which would seem to be justified in this case is the lcl:sex parameter. Importantly, there 
is no significant with country where data were collected. 

 

Residual 

degrees of 

freedom 

Residual 

Deviance 

Degrees 

of 

freedom Deviance Pr(>Chi) 

Basic model 862 77.205 

   Basic model + lcl:country 861 77.203 1 0.00256 0.8647 

Basic model + lcl:sex 860 75.833 1 1.36946 0.000082 

Basic model + lcl:sex + lcl:country 859 75.810 1 0.02368 0.6046 

Basic model + lcl:sex + lcl:country + 

lcl:sex:country  858 75.805 1 0.00491 0.8136 
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Figure 15 Standard diagnostic plots for the GLM fitted to estimate the exponent parameter b in equation 4. The results 
suggest that the model is stable, no assumptions are violated to an unacceptable degree and parameter estimates should 
be reasonable.  

In Guyana, seabob sex has been recorded as “unknown” as well as “female” and “male”. This 

unknown category is likely to be a mix of sexes of immature seabob, but is most likely to mainly 

consist of immature females since male sexual parts are easier to identify. That most are probably 

female was confirmed from average length-weight relationship (Table 12) and therefore these are 

allocated to female for the purposes of the model and stock assessment.  

The final model therefore consisted of females (female and unknown) and male, with a single sex 

interaction term for the carapace length covariate. The parameters can be used to estimate the b 

parameter for both sexes (Table 13). 
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Table 12 Analysis of variance comparing models where sex “U” (unknown) is allocated to the female (U=F) or male (U=M) 
category, or kept separate (U=U). The change in deviance represents the loss from combining unknown with females of 
males respectively. There was a clear significant change if unknown was allocated to males, but the change was not 
significant for females. 

 

Residual 
degrees of 
freedom 

Residual 
Deviance 

Degrees 
of 
freedom Deviance Pr(>Chi) 

U=F 862 76.330 
   U=U 860 75.833 2 0.4963 0.05974 

      

U=M 862 77.118 
   U=U 860 75.833 2 1.2844 0.00068 

 

Table 13 Parameter estimates for the basic model with sex interaction term and “unknown” allocated to “female”. The 
resulting maximum likelihood estimates for the b parameter for males and females are also given.  

 

Estimate Std. Error t value Pr(>|t|) 

(Intercept) -4.292430 0.263996 -16.259 < 2e-16 

Lcl 1.798805 0.092706 19.403 < 2e-16 

Sex.F -1.121380 0.285088 -3.933 9.05E-05 

Country.Suriname 0.008994 0.026108 0.345 0.730551 

Sex.F : Country.Suriname -0.113920 0.030129 -3.781 0.000167 

lcl:Sex.F 0.393955 0.099369 3.965 7.96E-05 

b Parameter (Equation 4)     

Male 1.798805    

Female 2.192760    

 

A conversion from age in months to weight class bin was provided by constructing an age-length 

matrix from the model, including growth variation. There were 29 weight bins from 0.0g to 6.0g, 

each of 0.2g width. Weights were rescaled to length, which provided a better model fit. The 

probability that a seabob was in a particular weight bin given its age is: 

  (   )   (  
      

     )   (  
      

     )  6) 

Where w =weight bin, a =age in months, N() = cumulative normal, uw and lw are the upper and 

lower bounds for the weight bin, Wa is the expected weight of seabob age a  (equation 4), b = 

length-weight parameter (equation 5 estimated in Table 13) and σ = growth standard deviation. The 

cumulative normal was set to 1.0 or 0.0 at the weight boundaries (uw =6.0 and lw=0.0 respectively). 

Separate growth was allowed for each sex. The resulting probability matrix (Figure 16) was used 

to convert age to weight class by multiplying the numbers-at-age vector by this growth matrix. 
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Figure 16 Female age-weight probabilities for bins 1-25 (from 0-28 bins) produced from the growth curve (Equation 4) and 
a normal distribution on length (Equation 6). 

3.5 Recruitment 

The stock recruitment model used was the Beverton-Holt, with the “steepness” parameterization: 

  
     

    (   )  (    )
    7) 

Where R =Expected recruitment, S =spawning stock biomass from the previous month or earlier 

depending on the length of the larval stage, R0 = expected recruitment when the stock is 

unexploited, S0 =spawning biomass per recruit when the stock is unexploited and h =steepness 

parameter (0.2< h  <1.0). The recruitment was modeled as a log normal, with equation 7 the log-

normal mean, and individual deviations fitted as parameters from 2002-2013. Before 2002, when 

only annual catches are available, no deviations from equation 7 are fitted. 

3.6 Likelihood 

3.6.1 Overview 

The log-likelihood was calculated for each data component based on the multinomial or normal log-

likelihoods as follows: 

 The negative log-likelihood for the size composition by size and sex in the random samples is 

calculated from the predicted catch proportions in numbers by size and sex and the 

observed numbers in the sample by size and sex. The scaled multinomial negative log-

likelihood for a particular month is given as: 

   ∑    (
(      ⁄   )

(     )
⁄ )     
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Where N = total sample size (number of shrimp measured) within a month, C  = predicted 

total catch in numbers within a month, eij = predicted catch in numbers of sex i, weight class 

j, oij = observed numbers in the samples of sex i, weight class j, and ε = small number 

constant to avoid zeroes leading to numerical errors during minimization. 

 The likelihood for the total catch and catch and effort data were based on the normal. 

Assuming a Poisson probability function for the catch, the scale parameter was assumed to 

be the square root of the predicted catch, so the negative log-likelihood would be: 

   ∑
(       )

 

    
   (  )     8) 

Where ok = observed catch, ek = predicted catch for a particular month k and ε = small 

number to avoid numerical errors. The predicted total catch weight is predicted from the 

model fishing mortality and selectivity, with catches summed over all sizes and sex. The 

predicted catch weight for a given level of effort is estimated from the population numbers 

in each weight class: 

      ∑               9) 

Where q = catchability parameter, f = observed effort, si = selectivity for weight bin i, wi = 

mid-weight point, and Pij = predicted population numbers in weight bin i and sex j. 

 The catches and catch and effort within commercial size categories is based on integrating 

over possible catch allocations among categories. This was necessary because commercial 

categories overlap and are incomplete. The details are given in section 3.6.2 below. 

 The average count per pound was assumed to follow a Poisson and therefore the log-

likelihood Equation 8 was used. In this case, the predicted count was the predicted catch 

number divided by the seabob weight summed over the weight bins in each category ID (see 

Table 14) converted from grams to pounds. Most categories also had a standard deviation 

for the observed counts taken in each month which was used as a weight. A minimum 

standard deviation of 10.28 was applied based on the mean standard deviation where 

sample sizes exceeded ten observations. 

 The negative log-likelihood log-recruitment deviations was the standard sum-of-squares 

(normal) differences between the parameter and the expected recruitment (Equation 7), 

with an additional scale parameter (σR) which could be fitted or fixed. 

 A auto-regressive penalty was added for the recruitment deviations: 

   ∑(       )
 

 

 

This has the effect of penalizing large fluctuations in the recruitment deviations on the basis 

that good or bad recruitment months will tend to occur next to each other. The importance 

of this penalty depends upon the weight it is given. For the current model, no additional 

weight was applied and its contribution to the overall likelihood was small. 

 

3.6.2 Log-Likelihood for Commericial Size Composition 

For each size composition, it is possible to estimate the number of seabob within it. This is the sum 

of seabob over the size category from smallest to largest. For example, the 90-110 count per pound 

size category would contain sizes varying from 5.04 (1000/(2.20462*90)) down to 4.12 

(1000/(2.20462*110)) grams weight. The expected number of seabob in each size category can be 
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obtained from the population model based on the fishing mortality for each size category, 

population abundance in each category and the fishing selectivity. 

All commercial categories can be defined as a subset of a larger category which contains it. In the 

simplest case, the category contains all the catch, so no larger category is required. Therefore in this 

case, the “larger” category and the category are the same and the log-likelihood is simply based on 

the expected landings directly from the model. In this simple case, the likelihood for numbers in a 

particular size category would be Poisson: 

  
  
   

   
            10) 

where xa=numbers observed in the category A and a=expected numbers in category A. The 

expected numbers can be calculated by simply summing over all sizes from the model within the 

category. Suitable alternatives to the Poisson can be used to account for over-dispersion and/or to 

simplify the calculations. Taking advantage of the situation where xa and a are very large, as in this 

case, the normal likelihood or log-normal could be used. 

Unfortunately, this likelihood cannot be applied in this simple form unless the data are manipulated 

to allocate all catches to non-overlapping well-defined categories. This should be avoided if possible, 

since the model would not be fitted to raw data and such manipulations can introduce unknown bias 

in the result. Instead, it was considered preferable to develop a likelihood which captures what size 

information there is in the data rather than impose such information by manipulating the data. 

In all cases, a significant proportion of the catch will be undifferentiated by size. Any catch allocated 

to a particular size range can therefore always be defined within the context of a larger size category 

which is complete. The known catch in the smaller category represents a minimum catch within this 

range, where other catches within the larger category might also be in the smaller one. The 

likelihood becomes the sum of likelihoods across possible allocations of catch between the two 

categories.  

To illustrate the basic calculation, we consider categories A and B covering separate size categories 

(Figure 17) for each of which the statistical model can estimate the expected catch in a particular 

month. The category B may envelop A (Bl and Bu) or extend it only (Bl or Bu), but it should always be 

possible to calculate the expected catch for both A and B. 

 

The data however is only available partially for A and B, and otherwise the total catch is made up in 

C, where C landings have been ungraded among A and B. We need to sum the likelihood over 

possible allocations of landings in C between A and B, so the likelihood for the joint Poisson 

likelihood becomes: 

  ∑  
  
          

(           )

    (           ) 

     
     

           11) 

 Bu Bl A 

C 

Figure 17 



DRAFT 
 

where Xa, Xb and Xc are the observed landings in A, B and C (unallocated A+B), and a and b are the 

expected catches in A and B which are estimated from the model. 

This can be simplified to some extent by reformulating to create a Poisson term for the total catch in 

A+B and a sum of binomial terms for the proportion in category A: 

         
(     )

(        )

(        ) 
∑  

(        ) 

    (           ) 
 (

  
(     )

)
  
(

  
(     )

)
                

     
 12) 

Similarly, the likelihood for several categories within a larger category can be described using a 

multinomial.  

For large catches it is not possible to sum over possible catches and Eq. 12 can only be simplified by 

closely approximating the binomial with a normal probability. The binomial term then becomes: 

 (  
  

(     )
   (        ))    (

(        )  
(     )

 √
(        )    

(     )
 )   13) 

Similarly, the total catch likelihood can be approximated with a normal density: 

   ((        ) (     ) √(     ))  ∫  (
(        )  

(     )
 √

(        )    
(     )

 )   
(     )

     
 14) 

The cumulative normal can be well approximated numerically (West, 2004), so the likelihood can be 

calculated reasonably easily for each datum.  

The binomial part of the likelihood is only informative on landings below those expected in category 

A. As the expected landings fall below the observed landings in category A, the log-likelihood 

declines. Clearly, as higher landings have been observed than those estimated, the estimated 

landings become less likely. Conversely, since any ungraded landings in C could be allocated to A, 

there is no information on higher estimated landings in A as all are equally possible. Therefore, the 

log-likelihood asymptotically approaches 1.0 as the expected catch increases. As the expected 

landings exceed the total landings observed (A+C), then the likelihood begins to decline again (Figure 

18). In this case, the estimated landings in A exceed the possible observed landings in A (A+C), and 

the estimate becomes less likely. The result is a flat-topped likelihood, where the flat top covers the 

likely range of the landings within the category. Because the likelihood will include a term for the 

total catch as well, the likelihood should have a mode for the full model, but additional information 

is likely to be required to be able to estimate parameters defining stock size composition. 

 



DRAFT 
 

 

Figure 18 Example conditional log-likelihood of expected number in a category (parameter a) where the observed catch in 
categories A and C are 2000 and 500, so 500 may or may not belong to category A. 

In reality several commercial size categories may overlap (Table 14) and therefore the likelihood 

(Equation 14), which assumes categories are independent, with the exception of the overlap 

between categories A and C, is not strictly correct. Calculating the likelihood correctly over several 

overlapping categories would strictly require summing over all combinations of allocating non-

graded catch among overlapping categories, which would become more complicated. However, 

because the likelihood is flat when the observed landings within a specific category is less than the 

expected landings, how ungraded landings are distributed is uninformative and the assumption of 

some independence should provide a good approximation to the likelihood as long as the total 

landings are also fitted. 

To capture the dependency between categories, landings can be combined within categories 

forming hierarchical relationships. For example, category 7 has landings within categories 5 and 2 

added to it, but all other categories would be excluded (Table 14). This leads to a complete set of 

likelihood calculations based on the category landings in each month (Table 15).  

The smallest and largest category in each month would include the smallest and largest shrimp. Not 

all months contain all categories. So, for example, Category 1 is often not present. In these months 

Category 3 would be assumed to cover all larger shrimp (i.e. combines with Category 1 sizes). For 

smaller shrimp, the categories show less discrimination, so a category 11 is present in every month. 
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Table 14 Commercial size categories based on “counts per pound” to be used in the stock assessment model. Categories 
are numbered from 1 to 11 for identification purposes only. So, for example category one includes all larger shrimp in the 
90 and below count, whereas category 4 includes counts 100-130 per pound. Category 2 would include all catches which 
have not been allocated to a size category, such discarded ungraded catch. Actual commercial category allocation to 
category ID is given in Table 3. 

Lower Bound of 
Count  

   0 1     

2 

90 3     

100   
4 

5 110 6 

130 7   

150 8 
9 

  

200 
10 

  

300 
11 

  

400     

1000 
   

 
 

Table 15 Likelihood calculations (CID) for category combinations based on allocation to category A, B and C in Equation 14 
and Figure 17. Category A consists of all complete categories with well-defined boundaries, C any potentially overlapping 
categories and B all categories which would be excluded. The number of likelihood calculations is the same as the number 
of categories (11), preserving the degrees of freedom.  

CID A B C Category A 
Count Range Calculated 

1 1-11   0-1000 For all months 

2 1 3-11 2 0-90 Where 1 exists 

3 
3 1,4-11 2 

90-100 Where 3 exists 
Including <90 if no larger category 

4 4,6 1,7-11 2,5 100-130 Where 4 exists  
Including <100 if no larger category 

5 
6 1,3,7-11 2,4,5 

110-130 Where 6 exists 
Including <110 if no larger category 

6 
4,5,6,7 1,3,8-11 2 

110-150 Where 5 exists 
Including <110 if no larger category 

7 7 1,3-4,6,8-11 2,5 130-150 Where 7 exists 

8 8 1,3-7,10-11 2,9 150-200 Where 8 exists 

9 8,9 1,3-7,11 2,10 150-300 Where 9 exists 

10 10 1,3-8 2,9,11 200-400 Where 10 exists 

11 11 1,3-9 2,10 300-1000 Where 11 exists 
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Table 16 Example landings in kilograms tail weight by size category in 2004.  

 1 2 3 4 5 6 7 8 9 10 11 

1 584 220601 6592 2756 6814 22194 44992 178989 0 544252 131274 

2 0 74136 929 3290 8096 0 0 0 0 141195 18424 

3 313 296615 5238 3886 9135 20865 32194 122156 0 401671 146774 

4 118 293066 12072 8090 16568 43915 62272 199271 0 452643 198056 

5 1385 225885 7500 0 0 23477 32994 114893 0 321880 183980 

6 576 231786 3438 0 0 34619 46379 159091 0 330705 139831 

7 2092 367871 14156 7193 10227 25689 54256 201972 35814 503004 141161 

8 1473 186498 4163 1842 6592 7252 13222 115028 22772 252127 179220 

9 324 55278 994 129 390 3465 2775 30041 0 58044 36880 

10 0 7623 9 270 596 0 0 0 0 8804 6524 

11 907 173842 2843 6157 7737 10645 13423 52010 0 247989 133886 

12 3641 186048 6086 0 0 16600 21997 77631 0 225774 145369 

 

4 Results 

4.1 Model Configuration 

The base case was determined from reviewing various configurations for the model (Table 4). This 

model was used to determine stock status and as the basis for carrying out MCMC simulations to 

estimate uncertainty.  

The resulting base model estimates fishing mortality, recruitment deviations and other parameters 

on growth and productivity (Table 18). Stock status and fishing mortality are reported in section 1.1. 

There is little evidence of a strong seasonal pattern in recruitment (Figure 19). 

 

Table 17 Deliberations of the working group to decide upon the base case and lower and upper credible bounds for the 
model structure.  

Structure/ 

assumption 

Base Case Justification Scenarios 

Sex ratio The sex ratio will be 
set at 50:50, and 
will not be fitted. 

There is no known reason why the sex ratio of 
recruits will be other than 50:50. When fitted, 
the estimated proportion of females was 0.43. 
Improvements to the fit were not large, so this 
parameter was fixed at 0.5. 

Estimated 
proportion 
female in 
the recruits 

Recruitment 
Variation 

σR=0.5 Results were insensitive to reasonable values for 
the recruitment variation parameter (σR). The 
parameter could not be fitted without a strong 
penalty function. 0.5 was chosen as a reasonable 
fixed value, although variation in estimated 
recruitment deviations suggested a higher figure. 
Higher values for this parameter (σR=>1.0) could 
not be fitted. 

σR=0.2, 0.5, 
0.8 
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Structure/ 

assumption 

Base Case Justification Scenarios 

Recruitment 
Seasonality  

No explicitly 
seasonality was 
added to the 
recruitment model. 

Although there may be seasonality in 
recruitment, it is uncertain what shape function 
should be used or how many recruitments there 
are each year. The recruitment deviations should 
show up any seasonal pattern which can be 
investigated at a later date. 

None 

M M=0.183 Estimates from longevity reported in scientific 
literature depend on growth estimates. In 
general, they imply low natural mortality which 
is not consistent with the catch data (i.e. poor fit 
if M<0.1 month-1). Estimates in the model are 
too high to be credible (M>0.6 month-1).  
Available direct estimates of natural mortality 
suggest 0.1-0.2 month-1. Estimates from Soomai 
et al. (2012) were used. 

M=0.1, 0.2, 
0.3, 
estimated 

K, t0 Females: K=0.216; 
t0=0 
Males: K=0.246; 
t0=0 

 

K cannot be fitted. The estimate from the fit 
(K>0.6 month-1) is too large to be biologically 
realistic. Indications suggest males grow faster 
than females. All published estimates found are 
less than 0.3 month-1. Higher estimates fitted the 
data better. Ribeiro De Campos, et al. (2011) 
were used as the higher estimates available. 

K=0.08, 
0.15, 0.2, 
0.3, 
0.22/0.25 

SSB survival 
after 12 
months 

No extra mortality 
after 12 months. 

It was considered possible that survival after 12 
months or after spawning could be low. There is 
no evidence in the data for this, however, so a 
standard plus-group for 12 month olds is 
applied. 

None 

SSB delay 
before 
spawning 

Use 2 month delay, 
as opposed to 1 
month 

There is a very small improvement in log-
likelihood for 2 months as opposed to 1 or 3, so 
for the current model it makes very little 
difference. 4-8 week larval stage would seem 
reasonable for this species. 

Delays of 
1, 2, 3, 4 

Domed 
selectivity 

A logistic curve was 
used. 

The “domed shaped” selectivity will make the 
perception of the stock much more positive. 
There is no evidence that a domed-shaped 
selectivity is appropriate, although it does fit the 
data better. The logistic should be more 
precautionary. 

Estimated 
domed 
parameter 

S50% Sex 
selectivity 

The same 
selectivity curve 
was used for both 
male and female. 

There was no significant difference in selectivity 
between males and females when selectivity was 
based on length. 

Estimated 
separate 
S50% by sex 

Stp 
selectivity 
steepness 

This was fixed to 
the boundary value 
(25). 

The estimate consistently moved to the 
boundary, indicating essentially “knife edge” 
selectivity. Fixing the parameter would avoid 
additional problems with the MCMC 

Estimated 
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Structure/ 

assumption 

Base Case Justification Scenarios 

SR 
Steepness 
(h) 

h=0.8 

 

Estimated steepness very low (h=0.314), but 
gave the worst case for stock status. There is no 
evidence of a stock recruit relationship (possible 
obscured by seasonality).  It was concluded that 
steepness cannot be estimated and the default 
h=0.8 was considered relatively precautionary 
for this stock. 

h=0.9, 0.8, 
0.7, 0.6, 
Estimated 

 

Table 18 Parameter estimates from base case model for all fitted parameters apart from the monthly fishing mortality and 
recruitment deviations. 

Parameter Estimate Standard 
Deviation 

Reference 

W  Females 3.87 3.55E-03 Females: Equation 4 

W  Males 2.41 1.67E-03 Males: Equation 4 

Growth σ 0.24 2.17E-04 Equation 6 

Ln(q) -16.14 3.43E-03 Log Catchability: Equation 9 

S50% 12.34 1.37E-03 Equation  

Ln(R0) 21.14 3.04E-03 Equation 7 

 

 

Figure 19 Logarithm of the recruitment deviations from the stock recruitment relationship (Equation 7) fitted in the model 
base case. 

4.2 Diagnostics 

Diagnostics were primarily based on plotting standardised residuals. Observed-predicted, predicted-

residual, time-residual and, where appropriate, weight bin-residual plots were examined. With some 

notable exceptions, the model fitted the data well and there were no unacceptable violations of 

model assumptions. It is not considered likely that there will be any change in the stock status 

estimate when the problems identified (outlined below) have been addressed. 
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Figure 20 Standardised residuals plotted against predicted values for the average count data. 

There were small departures between the observed and expected average counts for the 

commercial size categories, particularly for the smallest category (Figure 20). In general, the lowest 

count categories indicated that the predicted count was higher than the observed. Conversely, for 

the higher count categories the predicted count was lower. This might suggest that the size 

categories need to be adjusted. However, while this adjustment should be explored, it should also 

be verified that the higher counts than expected in the smallest size categories are not just due to 

the increased presence of broken tails. It should also be noted that adjusting the size categories is 

not a trivial exercise, since it involves altering the data preparation as well. If the smallest 

commercial size category includes a high proportion of pieces in the count, this category should be 

removed from this data component. 

The other major issue with the model was identified for the random size sampling standard residual 

plot against weight bin (Figure 21). A clear pattern emerged suggesting that the selectivity model 

used is flawed. In both males and females, there were fewer shrimp than expected in the catches in 

the bin range 4-10 (0.8-2.0g peeled tail weight). In addition, males lack a peak of smallest individuals 

very evident in females and overall the male residual plot appears shifted to the left (Figure 21). One 

obvious reason for this is that selectivity may also depend on age, which might help explain the 

difference between males and females since they exhibit different growth. It may also be due to 

misunderstood life history patterns, since the basic biology of the species is not well understood. It is 

also possible bias may occur through misallocation between males and females particularly in the 

youngest categories. Although this last explanation seems unlikely to explain the observed patterns, 

it does need to be verified. Completion of the Suriname assessment, with its different fishery 

characteristics, would help understand how these different factors might be affecting size 

composition. 
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Figure 21 Female (top) and male (bottom) plot of residuals by weight class. 

5 Conclusion 

The model may be improved, but such improvements are not likely to lead to a dramatic change in 

the perception of stock status. It appears most likely improvements in the model would come from 

adjusting the selectivity model and improving the interpretation of the size categories. 

Notwithstanding these improvements, the assessment model can be used for scientific advice at this 

stage of development, conditional on further model development and evaluation. It provides a 

useful assessment of the history of the fishery, an improved understanding of the impact of the 

fishery on the population, and a sound basis for developing a harvest control rule. 

5.1 Further Work 

The following tasks were identified as requiring attention in 2013/14: 

 Complete the Suriname stock assessment for comparison. 

 Examine average counts of the smallest shrimp to see what proportion are pieces as 

opposed to whole shrimp. 

 Adjust commercial category definitions in the assessment model to improve residual 

patterns. 
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 Explore alternative selectivities and life history patterns that might explain the size 

composition in the landings better. 

 Explore increasing the recruitment random walk penalty to examine any recruitment 

patterns that may emerge. 

 The commercial category likelihood is not strictly correct in that it does not take account of 

allocation of category C landings to categories other than A. So the likelihood only accounts 

for partial, pair-wise dependency. Further development of the likelihood to account for 

more category combinations should be considered. 
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